model = rfm.KumoRFM(graph)
# Forecast 30-day product demand
query1 = "PREDICT SUM(orders.price, 0, 30, days) FOR items.item_id=1"
result1 = model.predict(query1)
display(result1)
# Predict customer churn
query2 = "PREDICT COUNT(orders.*, 0, 90, days)=0 FOR users.user_id IN (42, 123)"
result2 = model.predict(query2)
display(result2)
# Item recommendation
query3 = "PREDICT LIST_DISTINCT(orders.item_id, 0, 30, days) RANK TOP 10 FOR users.user_id=123"
result3 = model.predict(query3)
display(result3)
# Missing value imputation
query4 = "PREDICT users.age FOR users.user_id=8"
result4 = model.predict(query4)
display(result4)