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Abstract

Foundation Models (FMs) have revolutionized unstructured data domains like
natural language and images, yet enterprises’ most valuable asset—structured and
semi-structured relational data—largely miss out on this AI wave. Today, to use AI
on enterprise data, one is forced to use conventional machine learning and build
per-task and per-dataset specific models that take months to develop and tune.
In this paper, we present a Relational Foundation Model (RFM): a pre-trained
model capable of making accurate predictions over any relational database and
any predictive task, all of this without requiring any data- or task-specific training.
We introduce Kumo Relational Foundation Model (KumoRFM), which extends
principles of in-context learning to the complex, multi-table relational graph setting.
KumoRFM employs a table agnostic encoding scheme and a novel Relational Graph
Transformer to reason within arbitrary multi-modal data across tables. This allows
KumoRFM to deliver accurate predictions (e.g., churn, fraud, recommendations,
forecasting) within one second, eliminates the need for labor-intensive model
development, and paves the way for scalable and explainable AI on enterprise data.
We demonstrate that KumoRFM outperforms conventional approaches, is advanta-
geous over supervised Relational Deep Learning approaches despite requiring no
dataset/task specific training, and substantially improves its performance further
through fine-tuning capabilities. KumoRFM is available at https://kumo.ai.

1 Introduction

The advent of large pre-trained Foundation Models (FMs) (Bommasani et al., 2021; Zhou et al., 2024)
has fundamentally transformed how users extract value from unstructured data like text, images,
audio, and video. This progress, fueled by training on massive corpora, has led to models capable
of encapsulating world knowledge and performing complex reasoning tasks (Touvron et al., 2023;
Grattafiori et al., 2024; DeepSeek-AI et al., 2025). A key feature is their ability to adapt to previously
unseen tasks via in-context learning (ICL) (Brown et al., 2020) by generalizing from a few examples,
prompted at prediction time.

However, there exists no foundation model designed specifically for enterprise data. Enterprise data
is typically stored in structured relational tables in data warehouses. Examples of such data are e.g.,
customer records, transaction histories, supply chain interactions, product catalogs, financial ledgers,
and electronic health records. Such data are arguably the most valuable asset that organizations
use for predictive decision making. It is commonly used to answer questions, such as: “Is a given
transaction fraudulent?”, “What product is a customer likely to buy next?”, “Will a customer churn?”,
“What will be the sales of a product next quarter?”, “Will a shipment arrive late?”.
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Figure 1: Key capabilities of Relational Foundation Models. RFMs can be applied to new/unseen
databases and schemas with highly varying structural characteristics, as found in (a) e-commerce, (b)
finance, or (c) health care. Secondly, they can be applied to any predictive task type, ranging from
one-off assessments (e.g. entity-level fraud prediction) to temporal predictive queries (e.g. temporal
recommendation prediction). Thirdly, they generalize to new predictive tasks and give accurate
predictions without any task-specific model tuning. Finally, not only do RFMs support prediction
outputs, but they also offer insights into the reasoning processes via explanations, and build trust
through extensive quantitative evaluation mechanisms.

Constructing such a foundation model presents a unique and substantial challenge. Such a model
needs to effectively learn across complex database schemas with an arbitrary number of tables and
columns, and handle the inherent heterogeneity of column types, which often have divergent semantic
meanings. Crucially, there is a wide range of open questions: What should such a foundation model
for relational data be capable of? Will it be able to generalize to new databases and tasks, even the
ones it was never trained on? Could it provide accurate predictions from a few in-context examples?
How does the neural network architecture look like? How should such a model be trained? What
data shall one use to train it? How can one efficiently apply it in real-time?

In this work, we present Relational Foundation Model (KumoRFM), the first foundation model
designed specifically for enterprise relational data. This model possesses several key advanced
capabilities (cf. Fig. 1): First, it is able to seamlessly adapt to database schemas unseen during its
training phase. This includes the ability to accommodate diverse structural characteristics, such as
varying numbers of tables and different types of relationships (e.g., one-to-many, many-to-many).
Second, KumoRFM can handle a wide range of column types effectively, including columns that
are proprietary or opaque, such as custom upstream embeddings or hashed identifiers. Finally,
KumoRFM flexibly adapts to a spectrum of predictive tasks specified at inference time through a
unified prompting interface. Not only are the predictions accurate; the model is able to perform them
even for tasks it was never explicitly trained for. Consequently, the scope of tasks that KumoRFM
can solve far exceeds rudimentary operations like missing cell imputation. For example, KumoRFM
is capable of handling complex predictive tasks such as temporal forecasting—e.g., predicting user
churn. Another example is forecasting inventory demand that requires careful analysis of past sales,
supplier reliability, seasonal trends, and macroeconomic indicators stored relationally. Furthermore,
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KumoRFM goes beyond merely producing predictive outputs. It incorporates mechanisms for
explainability, offering insights into the reasoning processes that lead to its predictions. To build
further trust and avoid the fear of hallucinations, KumoRFM also facilitates quantitative prediction
accuracy evaluation to let users judge the quality of predictions without relying on them blindly.

KumoRFM enables users to generate accurate predictions, such as item recommendations, customer
churn detection, or fraud identification, directly on any set of structured data tables without the need
to manually engineer and train task-specific or dataset-specific models. Built on a generalized Trans-
former architecture, KumoRFM is pre-trained to learn and reason across multiple tables of structured
data at once. KumoRFM delivers predictions in less than one second, achieving accuracy comparable
to state-of-the-art supervised deep learning models. The model facilitates rapid experimentation and
deployment across an almost boundless set of diverse use cases. KumoRFM can be further fine-tuned
to a specific task, delivering even higher accuracy.

Specifically, KumoRFM builds on the principles of Relational Deep Learning (RDL) (Fey et al.,
2024), which represents relational data as a temporal heterogeneous graph, where each entity is
represented as a node, and the primary-foreign key links between entities define the edges. It utilizes
table-wise attention mechanisms in the form of a Relational Graph Transformer (Dwivedi et al.,
2025), which operates on the local subgraph centered around the entity of interest. Its table-invariant
feature representation enables seamless transfer across tables with varying multi-modal column types,
i.e. numerical values, (multi-)categorical variables, timestamps, free-form text, images, embeddings,
anonymized inputs, such as hashed identifiers and custom upstream embeddings, where a natural
language prior would invariably fail.

We introduce a novel declarative mechanism for prompting KumoRFM. Our Predictive Query
Language (PQL) is a SQL-like syntax designed to define predictive modeling tasks. In PQL, a
predictive query is structured to specify the target variable, the entity for which predictions are made,
and optional filters to refine the dataset. PQL (and thus KumoRFM) supports various predictive
tasks, including regression, binary classification, multi-class and multi-label classification, as well
as link prediction. The flexibility of the language allows for diverse applications such as item
recommendation, user engagement analysis, fraud detection, forecasting, and many others.

KumoRFM utilizes in-context learning, enabling it to generalize to previously unseen tasks from a
collection of labeled examples to new, future examples directly during prediction time. KumoRFM ex-
ecutes a given Predictive Query with a powerful real-time in-context label generator that dynamically
produces task-specific context labels for any given entity by leveraging temporal neighbor sampling
(Wang et al., 2021; Fey et al., 2024). This mechanism is used both to construct input subgraphs
and to derive in-context labels in a time-consistent manner. In-context learning is then applied in
two complementary ways: (1) within the subgraph of an entity by attending to its own historical
labels as well as those of its entities nearby; and (2) across sampled subgraphs, using subgraph-wise
attention to capture broader contextual patterns. This dual mechanism not only reduces the number
of context examples required, but also prioritizes context that is more relevant according to temporal
and relational proximity.

Lastly, KumoRFM incorporates explainability at both the global data level and the individual entity
level (Simonyan et al., 2013; Sundararajan, 2024; Ying et al., 2019). For any prediction, users
can examine the features and columns most relevant to the prediction and assess the importance of
individual nodes and edges within the subgraph of the entity.

We evaluate KumoRFM on 30 different predictive tasks coming from 7 diverse publicly available
datasets in RELBENCH (Robinson et al., 2024). RELBENCH is a benchmark for Relational Deep
Learning that comprises a wide range of relational databases and tasks. Importantly, KumoRFM was
never trained nor tuned on any of the datasets or predictive tasks included in RELBENCH. Results
show that across 30 tasks from 7 datasets, on average, KumoRFM outperforms both the de-facto
gold-standard of feature engineering as well as end-to-end supervised deep learning approaches by
2% to 8% across three different task types. When fine-tuned on a specific task, KumoRFM can
improve its performance further by 10% to 30% on average. Most importantly, KumoRFM is orders
of magnitude faster than conventional approaches that rely on supervised training, and provides a
zero-code solution to query any entity and any target at any future point in time.
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PREDICT COUNT(orders.*, 0, 7)
FOR users.user id = 0
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Figure 2: Overview of the KumoRFM architecture. Given a relational database and a predictive
query, KumoRFM constructs context and prediction subgraphs by dynamically sampling from the
database: it uses a backward-looking graph sampler to obtain time-consistent context and prediction
subgraphs, and a forward-looking sampler to retrieve ground-truth labels. Context and prediction data
are then fed into a Relational Graph Transformer, which learns generalized subgraph representations
to enable in-context learning.

2 Overview of KumoRFM

KumoRFM is the first system to offer accurate, explainable, and trustworthy predictions on any
database and any predictive task, all without any task/dataset-specific training or tuning. At the
core of KumoRFM is the Predictive Query Language (PQL), an expressive declarative language for
specifying predictive tasks (Sec. 2.1). With this, users can effectively “talk to their data”2, issuing
high-level queries for tasks such as forecasting or recommendation, and instantly receiving predictions,
explanations and quantitative evaluation metrics. Explanations are available at fine-grained analytical
and textual summary levels. The quantitative prediction accuracy evaluation process enables users to
build confidence in the model’s predictions through both performance-centric and behavioral metrics.

The KumoRFM architecture is composed of several tightly integrated components that operate in
harmony to deliver accurate, fast, and responsive performance:

• A powerful real-time in-context label generator that dynamically curates task-specific context
labels for any entity at any point in time.

• A novel pre-trained Relational Foundation Model that seamlessly integrates a table-width invari-
ant column encoder and performs table-wise attention mechanisms.

• A comprehensive explainability module that leverages both analytical and gradient-based tech-
niques to provide explanations at the global data level as well as for individual entities.

• A fine-tuning module designed to optimize a query for final large-scale production use-cases,
ensuring it runs efficiently at the scale of billions of predictions.

Fig. 2 highlights the inter-play of the different building blocks into a unified system. KumoRFM is a
running system connected to a per-enterprise specific relational database which stores its structured
data (e.g., product catalogs, transaction records, customer data, supply chain data). KumoRFM
internally represents such data as a temporal, heterogeneous graph G (Fey et al., 2024). Based on this
representation, KumoRFM has the capability to seamlessly traverse through the graph in real-time,
and query or sample subgraphs around a given entity e (e.g. a customer or product) at any specific
point in time t. This sampling approach allows (recursive) access to neighbors (e.g., orders attached
to a user or item) in constant time and is highly customizable: it allows for specifying the number of
hops, tables, and metapaths to sample based on different temporal sampling strategies (e.g., uniform,
most recent, fixed time interval), and can be adaptive (i.e., up to a certain node budget) to allow for
maximally sized subgraphs even in cold start scenarios.

2A natural language interface to PQL converter is also available, though we omit its details here for brevity.
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Once a predictive query is issued, it gets parsed, validated and transformed into an abstract syntax
tree. Such a predictive query unambiguously defines the task type (node-level prediction vs. link-level
prediction) and query type (one-off assessment vs. temporal prediction) (Sec. 2.1). KumoRFM then
builds upon the principles of in-context learning, and connects it to the Relational Deep Learning
setting. That is, given an entity e and a timestamp t, we sample the k-hop subgraph G≤t

k [e] ⊆ G
around entity e up to timestamp t, and use it as input to make a prediction ỹte according to the
user-defined predictive query. In the conventional RDL setup, such a model is trained from scratch,
using offline-generated historical labels yt̂ê, t̂ < t, ê ∼ G, for supervision. However, in the in-context
learning setup, these historical labels are instead prompted during prediction time to a pre-trained but
frozen KumoRFM:

ỹ(t)e = KumoRFMθ

(
G≤t
k [e],

{(
G≤t̂
k [ê], yt̂ê

)}
t̂<t
ê∼G

)
, (1)

where t̂ and ê refer to randomly sampled timestamps and entity nodes, respectively. This approach
fundamentally departs from conventional supervised learning where model parameters θ are trained
for a specific dataset and task, with the final model being applied to unseen examples at inference time.
Instead, KumoRFM is pre-trained to reason about the non-linear dependency between (subgraph,
label) pairs in a single forward pass to derive a prediction for a test subgraph, and thus can naturally
generalize to unseen datasets and tasks. Importantly, to accommodate for real-time use-cases, all
required input data (i.e. the entity subgraph, context subgraphs and their labels) are generated and
combined on-the-fly (Sec. 2.2).

KumoRFM is built on a generalized Transformer architecture, and offers two key innovations: (1)
context labels are dynamically attached to each subgraph in order to favor context that is relevant
according to temporal and relational proximity; (2) a Relational Graph Transformer (Dwivedi
et al., 2025) that utilizes this input data to perform self-attention in order to exchange information
across multiple tables and context labels; KumoRFM supports node (binary, multi-class, multi-label)
classification, node regression, and link prediction tasks, relying on individual routines to map them
into the in-context learning setup (Sec. 2.3). KumoRFM is trained on a mix of both publicly available
real-world databases and synthetic data. No private enterprise data was used during its training phase.

Finally, we overcome one of the major limitations of in-context learning via fine-tuning capabilities:
while in-context learning allows for rapid experimentation and obtaining accurate predictions for
a pre-defined set of entities, it does not scale well to billions of task-specific predictions requested
at once. Here, fine-tuning converts the in-context workflow into a supervised production pipeline,
ensuring efficient deployment at scale by specializing the model to a given predictive query. We
briefly describe these internals as well as the support for explanations and evaluations in Sec. 2.4.

2.1 Prompting KumoRFM: The Predictive Query Language Interface

To enable users to explicitly and unambiguously specify a predictive task, we introduce the Predictive
Query Language (PQL). While RDL eliminates the need for tedious feature engineering, PQL
eliminates the need for training set and label generation. In contrast to traditional query languages
designed for data manipulation (e.g., SQL (Chamberlin & Boyce, 1975)), PQL abstracts away
physical data manipulation and instead focuses solely on the domain and predictive label definitions,
leaving out unnecessary details such as data sampling that do not require explicit user input.

Every query has a clearly separated label (PREDICT clause) and entity definition (FOR clause), defining
both the entities for which predictions are madehe label for every individual entity. Additional filters
(WHERE clause) can be applied to both the label and entity clause. PQL supports aggregations (SUM,
COUNT, AVG, LIST_DISTINCT, etc.), binary operations (=, <, CONTAINS, etc.), and logical operations
across different time granularities (hours, days, months). For more details on the PQL’s structure and
syntax refer to its official documentation3.

PQL is capable of handling a broad set of task types, such as node (binary, multi-class, multi-label)
classification, node regression, and link prediction, ranging from missing cell imputation to complex
forecasts. We find that these task types cover the large majority of practically-encountered predictive
problems, allowing users to use KumoRFM for most practical problems. Examples of predictive
queries and their corresponding mappings to a task type are given in Fig. 3.

3PQL documentation: https://docs.kumo.ai/docs/pquery-structure
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first categorical value

PREDICT FIRST(orders.type, 0, 7)
FOR EACH users.user id IN (0, 1, 2)
(a) Node multi-class/label classification

logical value

PREDICT COUNT(orders.*, 0, 7) > 0
FOR EACH users.user id IN (0, 1, 2)

(b) Node binary classification

sum of numerical values

PREDICT SUM(orders.value, 0, 7)
FOR EACH users.user id IN (0, 1, 2)

(c) Node regression

set of foreign keys

PREDICT LIST DISTINCT(orders.item id, 0, 7)
FOR EACH users.user id IN (0, 1, 2)

(d) Link prediction

Figure 3: Mapping from predictive queries to task types. The aggregation scheme and the semantic
type of the target column uniquely determine the underlying machine learning task.

Defining the predictive problem through PQL offers key advantages for robust foundation model
predictions:

• The label definition is independent of the entity and time, allowing us to generate additional labeled
input data for additional entities, even if they are not specified by the input.

• The language is intentionally restrictive around manipulation of time to ensure that past labels can
safely be computed for any timestamp with an unambiguous forward- and backward-looking time
frame. This is essential to computing valid labels and preventing data leakage.

• The syntax and graph specification alone define the task type, allowing us to automatically pick a
suitable model head for down-stream processing.

2.2 Online Context Generation

The Predictive Query Language uniquely defines a predictive task. As such, it also defines the
procedure on how to obtain ground truth labels from historical snapshots of the data, which we can
use to generate context labels to perform in-context learning within KumoRFM. Since KumoRFM is
a running system designed to answer any predictive task in real-time, task-specific context-labels
need to be dynamically produced in real-time as well. Such context labels inherit a similar structure
compared to the training table T̂ introduced in RDL, i.e. it is given by a set of triplets {(ei, ti, yi)}ni=1
that tie an entity e and timestamp t to a ground-truth label y. However, the RDL framework relies
on training tables to be curated and generated offline. In our case, the system does not know the
predictive query in advance so such pre-processing is not possible nor required.

In order to meet real-time requirements, we enabled predictive queries to be issued online. For this,
we rely on temporal sampling procedures based on fixed time intervals on a set of metapaths, as
parsed from the predictive query definition (i.e. the metapaths to reach target definitions and entity
filter constraints). Afterwards, target definitions and entity filters can be efficiently computed directly
on the GPU in a mini-batch fashion. As such, we rely on forward-looking graph samplers to generate
the in-context labels, while backward-looking graph samplers generate the corresponding input
subgraphs. On average across a diverse set of predictive queries, we can generate ≈ 2M in-context
labels in less than one second.

In order to answer a query in KumoRFM with high accuracy, we dynamically update the graph
on-the-fly, grouping historical labels into a dynamically constructed training table T̂ and attaching
it via primary key-foreign key connections to the entity table. This training table contains labels of
historical timestamps of all entities sampled within the input test subgraph (including the seed entity
itself). This mechanism models both temporal proximity in the form of autoregressive labels (Box
& Jenkins, 1976) (e.g., the sum of monthly transactions of the seed user over the past year) and
relational proximity (e.g., the sum of monthly transactions of nearby users over the past year). Such
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relational proximity tends to be especially helpful in homophilous tasks, in which entities are likely
to be connected to others who share similar characteristics, providing invaluable learning signal.

2.3 The KumoRFM Architecture

KumoRFM embeds entity-centric subgraphs followed by an in-context learning module. In particular,
it consists of three main stages: (1) a table-invariant row embedding module that can operate on
multi-modal data of all types (numerical, categoricals, free text, embeddings, etc), (2) a Relational
Graph Transformer (Dwivedi et al., 2025) to perform attention-based message passing between
different nodes in the graph, and (3) a final ICL module that performs in-context learning from
context subgraphs to test subgraphs. We now describe this architecture in more detail.

Table-Invariant Row-level Representations. The initial module encodes individual rows in the
database into dense vector representations. Since tables within a database (and across databases) have
different width and diverse multi-modal column types, the KumoRFM encoding module is designed
to be agnostic to these kinds of variances. In particular, each column is encoded w.r.t. its semantic
type which specifies the “modality” of the column. A variety of semantic types are supported to
handle column types, such as numerical (e.g., price and age columns), categorical (e.g., gender and
educational-level columns), multi-categorical (e.g., movie genres), timestamp (e.g., date of events),
text (e.g. product descriptions) or embeddings (e.g. custom upstream embeddings) (Hu et al., 2024).

A database holds a collection of tables T = {T1, . . . , Tn}. The encoder is used to encode each cell
in every table T ∈ T ∪ {T̂} into a representation CT ∈ RNT×CT×F of fixed-length F , where NT

refers to the number of rows and CT refers to the number of columns in table T . Afterwards, we
utilize a Transformer (Vaswani et al., 2017; Lee et al., 2019) on the two-dimensional grid CT to
obtain row-level representations H(0)

T ∈ RNT×F for every table T , which is then used for subsequent
processing. Importantly, thanks to its attention formulation, the Transformer is agnostic to table size,
allowing it to generalize across arbitrary table schemas and dimensions.

Table-wise Interaction. In order to exchange information across tables, we utilize a graph-based
representation in which nodes corresponds to rows in all tables and edges capture primary-foreign
key relationships. In order to capture rich structural patterns and enabling long-range modeling
capabilities, we rely on a Relational Graph Transformer (Dwivedi et al., 2025), which applies self-
attention within the full (sub-)graph, including the dynamically attached context table T̂ . For this, the
row-wise embeddings H(0)

T ∈ RNT×F , T ∈ T ∪ {T̂}, are extended by various positional encoding
schemes that define the final token representation, i.e.:

• A node type encoder encodes the table type of each table T ∈ T ∪ {T̂}.
• A hop encoder captures the structural proximity between the entity node and other nodes in the

subgraph.
• A time encoder encodes the relative time of facts/events w.r.t. the prediction time t.
• A subgraph encoder captures the local fine-grained graph structure. This effectively captures

parent-child relationships or important structural relationships such as cycles.

Finally, after L layers of table-wise interaction via the Relational Graph Transformer, we read out the
representation h

(L)
T,e ∈ RF of the entity e in table T of interest.

In-Context Learning. In order to apply the final stage of in-context learning, each of the subgraphs
in the training/context set and in the test set are individually encoded into fixed vector representations,
following the procedure described above. We stack these representations into context representations
H

(L)
train (obtained from earlier timestamps) and test representations H

(L)
test, which we finally feed

together with context labels ytrain into an ICL module built upon a Transformer architecture to obtain
class probabilities or regression values.

Link Prediction. To cast link prediction tasks such as recommendation into the in-context learning
framework, KumoRFM utilizes fully-inductive pair-wise representations of users and items Yuan et al.
(2025). Specifically, both user and item representations are read out from the user-centric subgraph
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using the Relational Graph Transformer, and are then fed into the in-context learning module for
classification. To address scalability challenges, item representations are uniformly sampled to a
fixed context size according to sampling depth, ensuring the model learns signals from items across a
diverse range of hops (e.g., repeated purchases, collaborative patterns).

2.4 Advanced Capabilities

Next, we showcase three advanced capabilities enabled by KumoRFM:

Model Prediction Explainability. KumoRFM can provide explanations to every prediction, both at
the global data level as well as for individual entities. Explanations can be turned on by user request,
and are made available as visualizations or textual summaries.

At the global data level, we introduce an analytical framework that organizes column-level context
data into cohorts and links their distributions to the ground-truth labels. For instance, this allows us
to assess how user age correlates with churn behavior, or how purchased product categories influence
lifetime value predictions. Importantly, this formulation accommodates column-level data across all
tables by leveraging weighted cohorts in adjacent tables. To quantify the importance of each column,
we compute the variance of model predictions across its cohorts—higher variance suggests greater
relevance of the column to the downstream prediction task.

Since KumoRFM is fully differentiable, we can leverage gradient-based explanation techniques (Si-
monyan et al., 2013; Sundararajan, 2024; Ying et al., 2019; Chen et al., 2020; Huang et al., 2020) to
understand the fine-grained impact of individual cells within an input subgraph on the model’s final
prediction. These methods reveal how changes in the input affect the model’s predictions. We use
saliency (Simonyan et al., 2013) as our gradient-based method of choice, due to its strong trade-off
between interpretability and computational efficiency (Amara et al., 2022). Saliency works by com-
puting the gradient of the model’s prediction w.r.t. each input feature, highlighting the most influential
components. A key novelty of our approach is the adaptation of gradient-based explanations to
multi-modal, cell-level inputs. Instead of assigning importance scores at the feature level, we compute
scores per cell—each of which may span multiple features—using specialized aggregation routines
tailored to each semantic type. This provides actionable insights on the level of cells for individual
predictions. For example, we can identify which product categories of past product purchases most
strongly influenced a recommendation, or detect risk indicators in fraud detection scenarios, such as
anomalous transaction times or unusually high purchase amounts.

Prediction Accuracy Evaluation. To build trust in model predictions and take away the fear of
hallucinations, KumoRFM supports a quantitative prediction accuracy evaluation mode that allows
users to assess the quality of a prediction for a given query. Specifically, for a temporal prediction,
we evaluate its performance using most recent historical data snapshots for which ground-truth labels
are reliably known. For one-off assessments, we simulate missing values by masking known cells
and measuring the model’s imputation accuracy.

KumoRFM reports both performance-oriented metrics—such as AUROC, AP, MAE, MAPE, or
MAP@k—as well as behavioral metrics that capture qualities like diversity and mitigating popularity
bias. Such evaluation can be used to expand the predictive query to fit user intent more precisely.

Fine-Tuning. While in-context learning is a powerful mechanism to query a model in an ad hoc
online fashion, it becomes inefficient for repeated execution of the same predictive query that runs
predictions over billions of entities.

A common strategy to speed-up computations is to reuse context embeddings H(L)
train or cache their

key-value pairs in the final Transformer layer, enabling a partial separation between training and
inference. KumoRFM automatically adopts this caching strategy when making predictions over
multiple test inputs. However, the final prediction head must still attend to all in-context examples,
which continues to limit scalability for large prediction workloads.

To address this issue, we further introduce fine-tuning capabilities into KumoRFM. Here, fine-tuning
refers to the process of specializing KumoRFM to a single dataset and a single task (Howard &
Ruder, 2018). In order to make KumoRFM task-specific, we replace its table-invariant encoders with
dataset-specific ones, and substitute the final in-context learning head with a task-specific one, e.g., as
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described in Yuan et al. (2025). We then follow the general RDL blueprint to fine-tune the model in a
supervised fashion based on a pre-generated training table. We found fine-tuning especially helpful
in link-level prediction tasks, as it allows us to shift from an inductive to a transductive setting for
improved model performance.

3 Related Work

Our work on KumoRFM builds on two primary lines of research: Representation learning over
relational databases, and the emerging field of foundation models for structured data.

3.1 Relational Deep Learning

The field of Relational Deep Learning (RDL) (Fey et al., 2024) has marked a significant paradigm
shift towards end-to-end deep learning over raw relational databases, alleviating the need for manual
feature engineering that typically bottlenecks conventional machine learning pipelines. Its core idea
is to represent relational tables as a temporal, heterogeneous graph, on which Graph Neural Networks
(GNNs) (Gilmer et al., 2017; Hamilton et al., 2017; Yuan et al., 2025; Chen et al., 2025) or Graph
Transformers (Zhang et al., 2020; Ying et al., 2021; Rampášek et al., 2022; Dwivedi et al., 2025)
are used to learn data-driven representations and obtain autonomous predictive models. Each table
corresponds to a node type, each record corresponds to a node, and primary-foreign key links define
the edges. While RDL approaches have demonstrated strong performance in learning from complex
relational structures, they generally adhere to a paradigm where distinct models are trained from
scratch and in isolation for each new dataset and task. In contrast, KumoRFM presents a foundation
model that adapts to new tasks via in-context learning.

3.2 Foundation Models for Structured Data

The pursuit of general-purpose models that can adapt to diverse tasks on previously unseen data has
recently expanded from natural language and vision into the realms of structured data. Our work on
KumoRFM builds upon and diverges from several key research trajectories in this space, which we
broadly categorize into three main areas:

LLMs on Textified Structured Data. One direct approach to leveraging the power of LLMs
for structured data involves transforming the data into a textual format. Here, tables or graphs are
serialized into formats like JSON or natural language descriptions, which are then fed as input
prompt together with a question to an LLM (Hegselmann et al., 2023; Fang et al., 2024; Zhao et al.,
2023; Wydmuch et al., 2024). This strategy aims to directly harness the impressive zero/few-shot
capabilities and reasoning abilities of LLMs. However, these approaches generally undergo brittle
prompt engineering, suffer from large context windows and hallucination (Gardner et al., 2024), fail
to handle datasets that lack textual grounding, struggle to capture numerical patterns (Thawani et al.,
2021), and require careful evaluation due to potential leakage concerns (Bordt et al., 2024). At the
core, there is a fundamental mismatch between the training objective (i.e. next token prediction) and
the task they are aiming to complete (i.e. minimizing the error of a forecast).

Graph Foundation Models via Text-Attributed Graphs. Another emerging line of research seeks
to identify an analogue of natural language prompting for graph machine learning tasks. In particular,
it tackles the problem of heterogeneity in graph foundation models through the use of text-attributed
graphs (Chen et al., 2024b; He et al., 2024; Wang et al., 2025), where textual node attributes are
encoded via (frozen) LLMs to project nodes into a unified embedding space (Tang et al., 2023; Chai
et al., 2023; Chen et al., 2024a; Fatemi et al., 2024). Prominent approaches involve augmenting
the graph with prompt nodes and label nodes that connect readout nodes from both context and test
subgraphs (Huang et al., 2023; Liu et al., 2023, 2024a). A GNN is then applied to the resulting
super-graph to predict labels for the test subgraphs. However, studies have shown that even when
textual representations are aligned, positive transfer remains limited to within-domain scenarios, as
graphs from different domains often exhibit substantially divergent structural patterns (Liu et al.,
2024b). Moreover, these methods impose a non-negligible amount of computational cost, as each
node must be individually encoded into a high-dimensional space by an LLM, and are inherently
challenging to tune jointly for many practical graph sizes and LLM choices.
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Table 1: Statistics of RELBENCH datasets. Datasets vary significantly in the number of tables,
total number of rows, and number of columns.

Dataset Domain #Tasks Tables Timestamp (year-month-day)
#Tables #Rows #Columns Start End

rel-amazon E-commerce 7 3 15,000,713 15 2008-01-01 2016-01-01
rel-avito E-commerce 4 8 20,679,117 42 2015-04-25 2015-05-14
rel-event Social 3 5 41,328,337 128 1912-01-01 2012-11-29
rel-f1 Sports 3 9 74,063 67 1950-05-13 2010-01-01
rel-hm E-commerce 3 3 16,664,809 37 2019-09-07 2020-09-14
rel-hm Social 5 7 4,247,264 52 2009-02-02 2021-01-01
rel-trial Medical 5 15 5,434,924 140 2000-01-01 2021-01-01

Total 30 51 103,466,370 489 1912-01-01 2020-09-14

Tabular Foundation Models. Recently, foundation models for single data tables have been in-
troduced which do not rely on text-attributed inputs (Hollmann et al., 2023, 2025; Qu et al., 2025).
These models identify column-wise and row-wise relationships among cells in a table directly within
a single forward pass of a pre-trained Transformer, and derive the non-linear dependency between
inputs and outputs from a large set of context examples. However, such tabular foundation models still
face several key limitations: They are restricted to small-scale datasets due to limitations in context
length, number of features, and output class size. They rely on complex input normalization schemes
and feature shuffling, which necessitates data wrangling and ensembling to maintain robustness. And
last, they are confined to single, flat tabular representation, which means that multiple data tables still
need to be joined and flattened via manual feature engineering. KumoRFM moves this paradigm to
the next level and provides a foundation model for arbitrary relational databases containing tables.

4 Results

For the experimental evaluation, we utilize 7 relational datasets and 30 predictive tasks introduced in
RELBENCH (Robinson et al., 2024). RELBENCH datasets, covering E-commerce, social, medical,

and sports domains. The databases vary significantly in the numbers of rows (i.e. data scale), the
number of tables and columns, as well as time ranges. The databases are summarized in Table 1.

It is important to note that KumoRFM has not seen any RELBENCH dataset during its pre-training
phase, which guarantees no leakage of information.

We evaluate KumoRFM on entity classification, entity regression and recommendation tasks, and
compare to the following baselines methods (whenever applicable for a given task type):

LightGBM A gradient boosting framework that builds an ensemble of decision trees, trained in a
supervised fashion (Ke et al., 2017).

Data Scientist An expert data scientist that solves each task by manually designing features and
feeds them into a supervised tabular model, the prior gold-standard for building predictive
models on relational databases (Robinson et al., 2024).

RDL An end-to-end supervised GNN baseline as introduced in Robinson et al. (2024), utilizing a
heterogeneous GRAPHSAGE (Hamilton et al., 2017) model. For recommendation tasks, we
further report the performance of a traditional two-tower GraphSAGE model as well as the
performance of the pair-wise NBFNET (Zhu et al., 2021) model, both utilizing the same
GNN backbone.

LLM A direct application of a LLAMA 3.2 3B model (Grattafiori et al., 2024) as introduced in (Wyd-
much et al., 2024), receiving short descriptions of the relational database schema and the
task, and a number of in-context subgraphs in JSON format. The LLM is then asked to make
a prediction for a test example. In the same spirit as KumoRFM, no training is taking place
here. However, we want to point out potential leakage concerns of this baseline, since all
datasets we evaluate on are publicly available (e.g., predicting driver positions in F1 races).
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Table 2: Test results (AUROC) on the entity classification tasks in RELBENCH. Higher is better.
KumoRFM in-context is making predictions from in-context provided examples. The model was
not trained on these tasks or datasets. KumoRFM fine-tuned was fine-tuned on each specific task.

SUPERVISED FOUNDATIONAL

Dataset Task LightGBM Data Scientist RDL LLM KumoRFM
(in-context) (fine-tuned)

rel-amazon
user-churn 52.22 67.60 70.42 62.55 67.29 70.47
item-churn 62.54 81.80 82.81 73.41 79.93 82.83

rel-avito
user-visits 53.05 — 66.20 53.36 64.85 78.30
user-clicks 53.60 — 65.90 54.07 64.11 66.83

rel-event
user-repeat 53.05 — 76.89 53.36 76.08 80.64
user-ignore 79.93 — 81.62 68.65 89.20 89.43

rel-f1
driver-dnf 68.86 69.80 72.62 80.03 82.41 82.63
driver-top3 73.93 82.40 75.54 87.11 91.07 99.62

rel-hm user-churn 55.21 69.00 69.88 63.81 67.71 71.23

rel-stack
user-engagement 63.39 90.30 90.59 81.23 87.09 90.70
user-badge 63.43 86.20 88.86 79.99 80.00 89.86

rel-trial study-outcome 70.09 72.00 68.60 59.17 70.79 71.16

Average ↑ 62.44 — 75.83 68.06 76.71 81.14

We evaluate pre-trained KumoRFM on the provided test sets of the RELBENCH tasks, using only
historical context from earlier timestamps. Importantly, no further training is performed at this stage.
Additionally, we report the performance of KumoRFM after fine-tuning it specifically for each dataset
and task.

4.1 Entity Classification Tasks

The entity classification tasks involve predicting binary labels for a given entity at a specific anchor
time across 12 distinct tasks. Performance is measured using AUROC, with higher values indicating
better predictive accuracy.

Table 2 presents the results of KumoRFM’s in-context and fine-tuned models compared to supervised
baselines (LightGBM, Data Scientist, RDL) and a no-training LLM baseline. Notably, KumoRFM’s
in-context learning model performs strongly out-of-the-box compared to supervised Data Scientist
and RDL baselines, even exceeding the supervised RDL approach on average (75.83 AUROC on
average in RDL vs. 76.71 AUROC on average in KumoRFM in-context). KumoRFM also out-
performs the foundational LLM baseline on every dataset and task. Overall, we found the LLM
baseline to be underperforming except on datasets where there exists clear leakage concerns (i.e.
rel-f1) due to the LLM’s memorization capabilities. Even in those cases, KumoRFM significantly
outperforms the LLM.

Lastly, we observe that fine-tuning KumoRFM has the potential to improve its in-context mode
further, especially on datasets with large number of labels available. On average, fine-tuned models
achieve a 7% relative improvement over the best-performing supervised baseline.

4.2 Entity Regression Tasks

Entity regression tasks require predicting a continuous scalar for a given entity at a specific anchor
time. We evaluate performance using Mean Absolute Error (MAE), where lower values indicate more
accurate predictions.

Table 3 presents the results of KumoRFM for both its in-context and fine-tuned modes, alongside
the supervised baselines LightGBM, feature engineered Data Scientist models, and RDL. Unlike
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Table 3: Test results (MAE) on the entity regression tasks in RELBENCH. Lower is better.
KumoRFM in-context is making predictions from in-context provided examples. The model was
not trained on these tasks or datasets. KumoRFM fine-tuned was fine-tuned on each specific task.

SUPERVISED FOUNDATIONAL

Dataset Task LightGBM Data Scientist RDL KumoRFM
(in-context) (fine-tuned)

rel-amazon
user-ltv 16.783 13.928 14.313 16.161 14.226
item-ltv 60.569 41.122 50.053 55.254 48.670

rel-avito ad-ctr 0.041 — 0.041 0.035 0.034

rel-event user-attendance 0.264 — 0.258 0.264 0.238

rel-f1 driver-position 4.170 3.963 4.022 2.747 2.731

rel-hm item-sales 0.076 0.036 0.056 0.040 0.034

rel-stack post-votes 0.068 0.065 0.065 0.065 0.065

rel-trial
study-adverse 44.011 40.581 44.473 58.231 44.225
site-success 0.425 0.407 0.400 0.417 0.301

Normalized Average w.r.t. RDL ↓ 1.100 — 1.000 0.984 0.862

classification, no foundational LLM baseline is included here, as LLMs lack the capacity to directly
produce reliable numerical outputs for such tasks.

KumoRFM’s in-context mode achieves very promising results, obtaining a relative gain of 1.6% over
the RDL baseline on average. However, we observe that the regression tasks pose unique challenges.
The Data Scientist baseline performs best on 3 out of the 9 tasks, exclusively on tasks with high
MAE where fine-grained graph reasoning may offer limited additional value. This gives rise to future
investigation how deep learning models across the board can better adapt to these settings. However,
this strength does not generalize across the board.

Notably, once fine-tuned, KumoRFM consistently delivers even stronger results, outperforming all
baselines on 5 out of 9 tasks. This highlights its capacity to adapt to the numerical prediction setting,
especially once given access to sufficient task-specific data.

4.3 Recommendation Tasks

Recommendation tasks involve predicting a ranked list of top-k target entities for a given source entity
at a specific anchor time. The value of k is predefined and varies across tasks in RELBENCH (Robinson
et al., 2024). Performance is measured using Mean Average Precision at k (MAP@k), where higher
values indicate better results.

Following prior work, we evaluate a LightGBM baseline that concatenates user and item features,
along with two graph-based methods: a two-tower GNN that computes pairwise scores via inner
product (Hamilton et al., 2017), and NBFNET (Zhu et al., 2021), which derives pairwise embeddings
from user-centric subgraphs.

Table 4 presents the results. Remarkably, KumoRFM’s in-context mode achieves strong performance
despite the inherent difficulty of in-context recommendation. This mode operates purely in the
inductive setting—without learning shallow embeddings, which are commonly used to enhance
model expressiveness (Wang et al., 2019; He et al., 2020; Yuan et al., 2025). On average, KumoRFM
outperforms both GRAPHSAGE and NBFNET by a wide margin (7.29 MAP@k vs. 1.85 MAP@k
vs. 6.74 MAP@k), and leads on 5 out of the 9 tasks.

When fine-tuned, KumoRFM transitions from an inductive to a transductive setting (Yuan et al.,
2025), further boosting performance. In this mode, it achieves state-of-the-art results on all 9 tasks.
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Table 4: Test results (MAP@k) on the recommendation tasks in RELBENCH. Higher is better.
KumoRFM in-context is making predictions from in-context provided examples. The model was
not trained on these tasks or datasets. KumoRFM fine-tuned was fine-tuned on each specific task.

SUPERVISED FOUNDATIONAL

Dataset Task LightGBM RDL KumoRFM
GRAPHSAGE NFBNET (in-context) (fine-tuned)

rel-amazon
user-item-purchase 0.16 0.74 0.10 1.72 2.93
user-item-rate 0.17 0.87 0.12 1.14 2.25
user-item-review 0.09 0.47 0.09 0.22 1.63

rel-avito user-ad-visit 0.06 0.02 3.66 4.02 4.17

rel-hm user-item-purchase 0.38 0.80 2.81 2.73 3.14

rel-stack
user-post-comment 0.04 0.11 12.72 11.83 13.34
post-post-related 2.00 0.07 10.83 11.80 12.21

rel-trial
condition-sponsor-run 4.82 2.89 11.36 11.29 11.65
site-sponsor-run 8.40 10.70 19.00 20.83 28.02

Average ↑ 1.79 1.85 6.74 7.29 8.82

4.4 Explanations

Next, we present illustrative examples that demonstrate KumoRFM’s capability for explainable
predictions. Specifically, we compute importance scores using both global column-level features
and localized subgraph cells, leveraging a combination of analytical and gradient-based explanation
methods. These signals are then passed through an LLM to generate natural language summaries.

Below, we show the generated explanation for a user churn query on the rel-hm dataset, where the
user is predicted to churn:

PREDICT COUNT(orders.∗, 0, 30) > 0 FOR users.user_id=1

The model predicts that the user has a moderate likelihood of placing at least one order in
the upcoming month. Key factors influencing this prediction include:

• Order Count: Users with only a few past orders have a very low likelihood of ordering
soon, while those with more orders show increased probabilities.

• Order Date Recency: Recent orders (6-12 months ago) greatly increase the chance of
placing new orders soon.

• Fashion News Frequency and Club Membership: Users who regularly receive fashion
news or have active club membership status show higher probabilities of ordering.

The explanations accurately highlight key signals in the data, emphasizing on Order Count, Order
Date Recency, and Fashion News Frequency and Club Membership status. These factors suggest
why the model predicts the user is likely to churn: few historical orders, no recent activity, and a lack
of engagement through fashion news or club membership.

Explainability is also available in the recommendation setting, enabling insights into why certain
items are suggested based on past user behavior or external factors. In the textual summary below, the
model justifies its emphasis on items such as jackets by referencing prior user interactions, including
Recent Views and Past Order History. Moreover, it indicates a strong likelihood that the user will
act on these recommendations soon based on User Status, relating the suggestions with associated
output probabilities:
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Figure 4: Time to first prediction in (a) hours of human labor and (b) lines of code (LoC),
illustrated on node-level classification tasks. KumoRFM is orders of magnitude faster (≈ 1 second
vs. ≈ 30 minutes vs. ≈ 12.3 hours) and requires zero-code to get to accurate predictions (1 LoC vs.
≈ 56 LoC vs. ≈ 878 LoC) compared to Data Scientist and RDL baselines, respectively.

PREDICT LIST_DISTINCT(orders.item_id, 0, 7) FOR users.user_id=2

The model predicts the likely distinct items that the user will order in the next week. Key
points supporting this prediction include:

• Recent Views and Past Order History: The descriptions of items recently viewed by
the user (e.g., jackets, t-shirts, jumpers) are among the most important features, with
importance scores above 95%. The user’s interest in specific product types (such as
jackets) is a strong predictor of future orders.

• User Status: The user is currently active, which supports the prediction that they will
make purchases soon.

4.5 Time To First Prediction

A major advantage of KumoRFM is that it empowers end-users to effortlessly explore various use-
cases, identify promising queries quickly, and generate predictions within seconds—no prior machine
learning expertise needed.

In contrast, even a data scientist with a Stanford CS MSc degree (4.0 GPA) and five years of experience
building machine learning models (Robinson et al., 2024) typically requires several hours to produce
a first working model. This process involves the following time-consuming steps4:

• EDA: Understanding the data by examining the schema, key relationships, and distributions.

• Feature Ideation: Brainstorming potential features manually, often with pen and paper.

• Feature Engineering: Implementing the designed features by writing and running SQL queries.

• Model Training: Training a decision-tree model, including extensive hyperparameter tuning.

While RDL has substantially reduced the cost of human effort through representation learning, it still
incurs the overhead of managing task-specific models—covering training, inference, re-training on
updated datasets, and other maintenance steps. With KumoRFM, none of these burdens remain.

4Data Scientist Notebooks: https://github.com/snap-stanford/relbench-user-study
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To validate this, we compare KumoRFM against the data scientist and RDL baselines in terms of (1)
hours of human effort required and (2) number of new lines of code needed to complete each task. As
shown in Fig. 4, KumoRFM delivers predictions in under one second, while a data scientist requires
an average of 12.3 hours, and RDL takes approximately 30 minutes per task.

From a coding perspective, data scientists write an average of 878± 77 lines to solve a single task.
Even with RDL—excluding the architecture and training boilerplate—registering a new task and its
training table still requires around 56± 8.8 lines of code. In contrast, KumoRFM reduces this to a
single line of code for defining a predictive query via PQL.

These results highlight the core value proposition of a relational foundation model: enabling real-time
predictions with minimal effort, paving the way for a new generation of predictive systems that can
be stacked, queried, and operationalized to drive faster and smarter business decisions.

5 Conclusion

We defined a blueprint for a Relational Foundation Model, a pre-trained model capable of making
accurate predictions over any relational database and any predictive task without requiring any
supervised training. Relational Foundation Model is the first system to implement this vision
by applying in-context learning principles to the multi-table relational graph setting. KumoRFM
delivers accurate, fast and responsive performance by integrating Relational Graph Transformers and
in-context learning modules into a unified architecture. It is accessible through the Predictive Query
Language, from which it dynamically generates context labels of historical snapshots in real time. In
future iterations, we are eager to close the gap between in-context and fine-tuned model performance.

A KumoRFM team members (alphabetical)
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Leskovec, Kexin Huang, Matthias Fey, Siyang Xie, Vid Kocijan, Viman Deb, Xinwei He, Zecheng
Zhang

We thank the entire Kumo.AI team for their invaluable support.

References
K. Amara, Z. Ying, Z. Zhang, Z. Han, Y. Zhao, Y. Shan, U. Brandes, S. Schemm, and C. Zhang.

GraphFramEx: Towards systematic evaluation of explainability methods for graph neural networks.
In LOG, 2022.

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg,
A. Bosselut, E. Brunskill, E. Brynjolfsson, S. Buch, D. Card, R. Castellon, M. S. Chatterji, A. S.
Chen, K. A. Creel, J. Davis, D. Demszky, C. Donahue, M. Doumbouya, E. Durmus, S. Ermon,
J. Etchemendy, K. Ethayarajh, L. Fei-Fei, C. Finn, T. Gale, L. E. Gillespie, K. Goel, N. D.
Goodman, S. Grossman, N. Guha, T. Hashimoto, P. Henderson, J. Hewitt, D. E. Ho, J. Hong,
K. Hsu, J. Huang, T. F. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti, G. Keeling, F. Khani,
O. Khattab, P. W. Koh, M. S. Krass, R. Krishna, R. Kuditipudi, A. Kumar, F. Ladhak, M. Lee,
T. Lee, J. Leskovec, I. Levent, X. L. Li, X. Li, T. Ma, A. Malik, C. D. Manning, S. P. Mirchandani,
E. Mitchell, Z. Munyikwa, S. Nair, A. Narayan, D. Narayanan, B. Newman, A. Nie, J. C. Niebles,
H. Nilforoshan, J. F. Nyarko, G. Ogut, L. Orr, I. Papadimitriou, J. S. Park, C. Piech, E. Portelance,
C. Potts, A. Raghunathan, R. Reich, H. Ren, F. Rong, Y. H. Roohani, C. Ruiz, J. Ryan, C. Ré,
D. Sadigh, S. Sagawa, K. Santhanam, A. Shih, K. P. Srinivasan, A. Tamkin, R. Taori, A. W.
Thomas, F. Tramèr, R. E. Wang, W. Wang, B. Wu, J. Wu, Y. Wu, S. M. Xie, M. Yasunaga, J. You,
M. A. Zaharia, M. Zhang, T. Zhang, X. Zhang, Y. Zhang, L. Zheng, K. Zhou, and P. Liang. On the
opportunities and risks of foundation models. CoRR, 2108.07258, 2021.

S. Bordt, H. Nori, and R. Caruana. Elephants never forget: Testing language models for memorization
of tabular data. CoRR, 2403.06644, 2024.

G. E. P. Box and G. M. Jenkins. Time Series Analysis: Forecasting and Control. Holden-Day, 1976.

15



T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models
are few-shot learners. In NeurIPS, 2020.

Z. Chai, T. Zhang, L. Wu, K. Han, X. Hu, X. Huang, and Y. Yang. GraphLLM: Boosting graph
reasoning ability of large language model. CoRR, 2310.05845, 2023.

D. D. Chamberlin and R. F. Boyce. SEQUEL: A structured english query language. Communications
of the ACM, 18(6):377–385, 1975.

J. Chen, Y. Miao, and X. Chen. Parameterized explainer for graph neural network. In NeurIPS, 2020.

R. Chen, T. Zhao, A. Kumar Jaiswal, N. Shah, and Z. Wang. LLaGA: Large language and graph
assistant. In PMLR, 2024a.

T. Chen, C. Kanatsoulis, and J. Leskovec. RelGNN: Composite message passing for relational deep
learning. In ICML, 2025.

Z. Chen, H. Mao, J. Liu, Y. Song, B. Li, W. Jin, B. Fatemi, A. Tsitsulin, B. Perozzi, H. Liu, and
J. Tang. Text-space graph foundation models: Comprehensive benchmarks and new insights.
CoRR, 2406.10727, 2024b.

DeepSeek-AI, D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi,
X. Zhang, X. Yu, Y. Wu, Z. F. Wu, Z. Gou, Z. Shao, Z. Li, Z. Gao, A. Liu, B. Xue, B. Wang, B. Wu,
B. Feng, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, D. Dai, D. Chen, D. Ji, E. Li, F. Lin, F. Dai,
F. Luo, G. Hao, G. Chen, G. Li, H. Zhang, H. Bao, H. Xu, H. Wang, H. Ding, H. Xin, H. Gao,
H. Qu, H. Li, J. Guo, J. Li, J. Wang, J. Chen, J. Yuan, J. Qiu, J. Li, J. L. Cai, J. Ni, J. Liang, J. Chen,
K. Dong, K. Hu, K. Gao, K. Guan, K. Huang, K. Yu, L. Wang, L. Zhang, L. Zhao, L. Wang,
L. Zhang, L. Xu, L. Xia, M. Zhang, M. Zhang, M. Tang, M. Li, M. Wang, M. Li, N. Tian, P. Huang,
P. Zhang, Q. Wang, Q. Chen, Q. Du, R. Ge, R. Zhang, R. Pan, R. Wang, R. J. Chen, R. L. Jin,
R. Chen, S. Lu, S. Zhou, S. Chen, S. Ye, S. Wang, S. Yu, S. Zhou, S. Pan, S. S. Li, S. Zhou, S. Wu,
S. Ye, T. Yun, T. Pei, T. Sun, T. Wang, W. Zeng, W. Zhao, W. Liu, W. Liang, W. Gao, W. Yu,
W. Zhang, W. L. Xiao, W. An, X. Liu, X. Wang, X. Chen, X. Nie, X. Cheng, X. Liu, X. Xie, X. Liu,
X. Yang, X. Li, X. Su, X. Lin, X. Q. Li, X. Jin, X. Shen, X. Chen, X. Sun, X. Wang, X. Song,
X. Zhou, X. Wang, X. Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. Zhang, Y. Xu, Y. Li, Y. Zhao,
Y. Sun, Y. Wang, Y. Yu, Y. Zhang, Y. Shi, Y. Xiong, Y. He, Y. Piao, Y. Wang, Y. Tan, Y. Ma, Y. Liu,
Y. Guo, Y. Ou, Y. Wang, Y. Gong, Y. Zou, Y. He, Y. Xiong, Y. Luo, Y. You, Y. Liu, Y. Zhou, Y. X.
Zhu, Y. Xu, Y. Huang, Y. Li, Y. Zheng, Y. Zhu, Y. Ma, Y. Tang, Y. Zha, Y. Yan, Z. Z. Ren, Z. Ren,
Z. Sha, Z. Fu, Z. Xu, Z. Xie, Z. Zhang, Z. Hao, Z. Ma, Z. Yan, Z. Wu, Z. Gu, Z. Zhu, Z. Liu, Z. Li,
Z. Xie, Z. Song, Z. Pan, Z. Huang, Z. Xu, Z. Zhang, and Z. Zhang. DeepSeek-R1: Incentivizing
reasoning capability in LLMs via reinforcement learning. CoRR, abs/2501.12948, 2025.

V. P. Dwivedi, S. Jaladi, Y. Shen, F. López, C. I. Kanatsoulis, R. Puri, M. Fey, and J. Leskovec.
Relational graph transformer. CoRR, 2505.10960, 2025.

X. Fang, W. Xu, F. A. Tan, J. Zhang, Z. Hu, Y. Qi, S. Nickleach, D. Socolinsky, S. Sengamedu,
and C. Faloutsos. Large language models (LLMs) on tabular data: Prediction, generation, and
understanding - a survey. PMLR, 2024.

B. Fatemi, J. Halcrow, and B. Perozzi. Talk like a graph: Encoding graphs for large language models.
In ICLR, 2024.

M. Fey, W. Hu, K. Huang, J. E. Lenssen, R. Ranjan, J. Robinson, R. Ying, J. You, and J. Leskovec.
Relational Deep Learning: Graph representation learning on relational databases. In ICML, 2024.

J. Gardner, J. C. Perdomo, and L. Schmidt. Large scale transfer learning for tabular data via language
modeling. In NeurIPS, 2024.

J. Gilmer, S. S. Schönholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for
quantum chemistry. In ICML, 2017.

16



A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Vaughan, A. Yang, A. Fan, A. Goyal, A. Hartshorn, A. Yang, A. Mitra, A. Sra-
vankumar, A. Korenev, A. Hinsvark, A. Rao, A. Zhang, A. Rodriguez, A. Gregerson, A. Spataru,
B. Roziere, B. Biron, B. Tang, and B. et al. Chern. The Llama 3 herd of models, 2024.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. In NeurIPS,
2017.

X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang. LightGCN: Simplifying and powering
graph convolution network for recommendation. In SIGIR, 2020.

X. He, X. Bresson, T. Laurent, A. Perold, Y. LeCun, and B. Hooi. Harnessing explanations: LLM-to-
LM interpreter for enhanced text-attributed graph representation learning. In ICLR, 2024.

S. Hegselmann, A. Buendia, H. Lang, M. Agrawal, X. Jiang, and D. Sontag. TabLLM: Few-shot
classification of tabular data with large language models. In AISTATS, 2023.

N. Hollmann, S. Müller, K. Eggensperger, and F. Hutter. TabPFN: A transformer that solves small
tabular classification problems in a second. In ICLR, 2023.

N. Hollmann, S. Müller, L. Purucker, A. Krishnakumar, M. Körfer, S. B. Hoo, R. T. Schirrmeister,
and F. Hutter. Accurate predictions on small data with a tabular foundation model. Nature, 2025.

J. Howard and S. Ruder. Universal language model fine-tuning for text classification. In ACL, 2018.

W. Hu, Y. Yuan, Z. Zhang, A. Nitta, K. Cao, V. Kocijan, J. Leskovec, and M. Fey. PyTorch Frame: A
modular framework for multi-modal tabular learning. CoRR, abs/2404.00776, 2024.

Q. Huang, M. Yamada, Y. Tian, D. Singh, and Y. Chang. GraphLIME: Local interpretable model
explanations for graph neural networks. CoRR, 2001.06216, 2020.

Q. Huang, H. Ren, P. Chen, G. Kržmanc, D. Zeng, P. Liang, and J. Leskovec. PRODIGY: enabling
in-context learning over graphs. In NeurIPS, 2023.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Liu. LightGBM: A highly
efficient gradient boosting decision tree. In NeurIPS, 2017.

J. Lee, Y. Lee, J. Kim, A. R. Kosiorek, S. Choi, and Y. W. Teh. Set transformer: A framework for
attention-based permutation-invariant neural networks. In ICML, 2019.

H. Liu, J. Feng, L. Kong, N. Liang, D. Tao, Y. Chen, and M. Zhang. One for all: Towards training
one graph model for all classification tasks. In ICLR, 2024a.

J. Liu, H. Mao, Z. Chen, W. Fan, M. Ju, T. Zhao, N. Shah, and J. Tan. One model for one graph: A
new perspective for pretraining with cross-domain graphs. CoRR, 2412.00315, 2024b.

Z. Liu, X. Yu, Y. Fang, and X. Zhang. GraphPrompt: Unifying pre-training and downstream tasks for
graph neural networks. In WWW, 2023.

J. Qu, D. Holzmüller, G. Varoquaux, and M. L. Morvan. TabICL: A tabular foundation model for
in-context learning on large data. In ICML, 2025.

L. Rampášek, M. Galkin, V. Prakash, A. T. Luu, G. Wold, and D. Beaini. Recipe for a general,
powerful, scalable graph transformer. In NeurIPS, 2022.

J. Robinson, R. Ranjan, W. Hu, K. Huang, J. Han, A. Dobles, M. Fey, J. E. Lenssen, Y. Yuan,
Z. Zhang, X. He, and J. Leskovec. RelBench: A benchmark for deep learning on relational
databases. In NeurIPS, 2024.

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image
classification models and saliency maps. CoRR, 1312.6034, 2013.

A. Yan Q. Sundararajan, M. Taly. Axiomatic attribution for deep networks. In ICML, 2024.

J. Tang, Y. Yang, W. Wei, L. Shi, L. Su, S. Cheng, D. Yin, and C. Huang. GraphGPT: Graph
instruction tuning for large language models. CoRR, 2310.13023, 2023.

17



A. Thawani, J. Pujara, P. A. Szekely, and F. Ilievski. Representing numbers in NLP: a survey and a
vision. In NAACL, 2021.

H. Touvron, L. Martin, K. R. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu,
J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,
R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. M. Kloumann, A. Korenev, P. S. Koura,
M. A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, Pu.
Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva,
E. M. Smith, R. Subramanian, X. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan,
I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and
T. Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In NeurIPS, 2017.

S. Wang, J. Huang, Z. Chen, Y. Song, W. Tang, H. Mao, W. Fan, H. Liu, X. Liu, D. Yin, and Q. Li.
Graph machine learning in the era of large language models (LLMs). TIST, 2025.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative
filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and
development in Information Retrieval, pp. 165–174, 2019.

Y. Wang, Y. Cai, Y. Liang, H. Ding, C. Wang, and B. Hooi. Time-aware neighbor sampling for
temporal graph networks. CoRR, abs/2112.09845, 2021.
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